

Bullialdus Crater: Probing Mineralogy and Local Hydroxyl Abundance

Rachel Klima, Joshua Cahill,
Justin Hagerty and David Lawrence
Lunar Science Forum, 2012
July 18, 2012

Bullialdus Crater

- 20.7°S, 22.2°W on western edge of Mare Nubium
- 61 km diameter
- Eratosthenian-aged

Bullialdus Crater

- Central peak nortic, walls more enhanced in clinopyroxene
- Layered mafic pluton (Pieters, 1991)
- Other possibilities include impact through thin old basalt flows, or through a differentiated melt sheet from the Nubium impact (Tompkins et al., 1994).
- Radiative transfer modeling suggests immature regions of the peak range from anorthositic norite, anorthositic gabbronorite to norite (Cahill and Lucey, 2007)
- Mean Mg' 70 (Cahill et al. 2009)
- Norites in central peak modeled to be >Mg[']₇₅ (Klima et al. 2011).

M³ Data: Color Composites

- M³ standard color composite:
 Red = Integrated 1 μm band depth
 Green = Integrated 2 μm band depth
 Blue = Reflectance at 1.58 μm
 Highlands Blue, Pyroxene Yellow
- Pyroxene composite:
 Red = 1.9 μm band depth
 Green = Integrated 2 μm band depth
 Blue = Integrated 1 μm band depth
 Highlands Black, LCP Yellow, HCP Cyan

Lunar Mineralogy: A Hyperspectral View

Moon Mineralogy Mapper (M³)
Vis-NIR Imaging
Spectrometer

Global Mode: 85 bands

20-40 nm spectral sampling

140 m/pixel at 100 km orbit

0.4-3 um wavelength range

Southern PKT — LUNAR POLAR Mineralogy and Thorium LUNAR POLAR Mineralogy and Thorium

Southern PKT — LUNAR POLAR Mineralogy and Thorium LUNAR SCIENCE & EXPLORATION Mineralogy and Thorium

Bullialdus Region: Thorium

Enhanced Thorium detected at Bullialdus corresponds to anorthositic and noritic terrain

Clementine

Lunar Prospector Thorium

 M^3

M³ Color Composite:

Yellow: Low-calcium pyroxene Black: Anorthosite

Blue/Cyan/Purple: Mare basalt or enriched in high-calcium pyroxene

Crater Mineralogy

Hydroxyl at Bullialdus crater

Absorption at 2.8 um: OH- strongly enhanced only in central peak

Hydroxyl overlain on NAC + LROC DEM

View is from North. Color ramp grades from dark blue (low) through white (high) OH- abundance. High OH- appears to correlate with higher albedo, more boulder-rich regions of the central peak.

Hydroxyl at Bullialdus crater

Hydroxyl at Bullialdus crater

- Typically, non-polar OH⁻ is likely to be present as a thin surficial layer, likely produced by interactions of the solar wind with the lunar regolith (e.g., Pieters et al., 2009; Sunshine et al., 2009).
- Bullialdus was fully imaged by M³ at three different times in the lunar day. The 2.8 um absorption is observed and is of roughly equivalent strength during all of them.
- Highlands soils typically exhibit stronger OH bands, but those surrounding Bullialdus show little to no absorption.
- Fresh craters are observed to exhibit stronger OH⁻ bands, potentially due to an abundance of fractured bonds facilitating in-situ OH⁻ production. Bullialdus central peak is relatively immature due to mass wasting, but not freshly impacted.

Bullialdus Crater: KREEP, Norite and OH⁻

- While the region surrounding Bullialdus is enhanced in thorium relative to the bulk Moon, there is a 'hot spot' associated with Bullialdus.
- Noritic and anorthositic material within +- 10 degrees N and E of Bullialdus also correlates with enhancements in thorium.
- 'Normal' highland anorthosites SW of Bullialdus do not correlate with enhanced thorium.
- OH- is enhanced only in the central peak
- Position of OH⁻ band is consistent with OH⁻ in pyroxene or other silicates, but low spectral resolution (40nm) makes characterization non-unique

Bullialdus Crater: Implications

- The mineralogy of the central peak of Bullialdus is consistent with material from a KREEP-rich, Mg- or Alkali-suite pluton.
 Deconvolved thorium abundance is most consistent with the Alkali suite. If the OH⁻ is internal to the rocks, it supports OH⁻ enrichment in late stage urKREEP liquids.
- As a mafic pluton, less OH⁻ would have degassed than in KREEPrich basalts.
- Further work is ongoing to characterize the nature of the OHband in more detail and to place bounds on the amount of OHdetected.

Bullialdus Crater

- 20.7°S, 22.2°W on western edge of Mare Nubium
- 61 km diameter
- Eratosthenian-aged
- Central peak nortic, walls more enhanced in clinopyroxene
- Layered mafic pluton (Pieters, 1991)
- Other possibilities include impact through thin old basalt flows, or through a differentiated melt sheet from the Nubium impact (Tompkins et al., 1994).
- Radiative transfer modeling suggests immature regions of the peak range from anorthositic norite, anorthositic gabbronorite to norite (Cahill and Lucey, 2007),
- Norites in central peak modeled to be >Mg₇₅ (Klima et al. 2011).